
CS 4530: Fundamentals of Software Engineering

Module 10.3 Building REST APIs

Adeel Bhutta, Jan Vitek and Mitch Wand
Khoury College of Computer Sciences

1

© 2023 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

REST: Representational State
Transfer
• A design principle for http requests
• Commonly used for APIs

2

REST Principles
• Single Server - As far as the client
knows, there’s just one

• Stateless - Each request contains enough
information that a different server could
process it (if there were multiple…)

• Uniform Cacheability - Each request is
identified as cacheable or not.

• Uniform Interface - Standard way to
specify interface

External
Cache

Web
Servers

App
Servers

Database
servers

Internal
Cache

Misc
Services

Clients

Client sees none
of this!

“Not cacheable” means that it must be
executed exactly once per user request.
• For example, POST is typically not
cacheable

Uniform Interface:
Nouns are represented as URIs
• In a RESTful system, the server is
visualized as a store of resources
(nouns), each of which has some data
associated with it.

• A URI represents such a resource.

5

Examples
• Examples:

• /cities/losangeles
• /transcripts/00345/graduate (student

00345 has several transcripts in the system;
this is the graduate one)

• Anti-examples:
• /getCity/losangeles
• /getCitybyID/50654
• /Cities.php?id=50654

6

Useful heuristic: if you
were keeping this data in
a bunch of files, what
would the directory
structure look like?
But you don't have to
actually keep the data in
that way.

We prefer plural nouns for
toplevel resources, as you
see here.

Uniform Interface:
Verbs are represented as http methods
• In REST, there are four things you can do
with a resource

• POST: requests the server to create a
resource

• there are several ways in which the
value for the new resource can be
transmitted (more in a minute)

• GET: requests the server to respond with
a representation of the resource

• PUT: requests the server to replace the
value of the resource by the given value

• DELETE: requests the server to delete
the resource

Path parameters specify portions of
the path to the resource
For example, your REST protocol might allow a path like

/transcripts/00345/graduate

In a REST protocol, this API might be described as

/transcripts/:studentid/graduate

:studentid is a path parameter, which is replaced by the value
of the parameter

8

Query parameters allow named
parameters
Example:
/transcripts/graduate?lastname=covey&firstname=avery

These are typically used to specify more flexible queries, or to
embed information about the sender’s state, eg

https://calendar.google.com/calendar/u/0/r/month/2023/2/1?
tab=mc&pli=1

This URI combines path parameters for the month and date,
and query parameters for the format (tab and pli).

9

https://calendar.google.com/calendar/u/0/r/month/2023/2/1?tab=mc&pli=1
https://calendar.google.com/calendar/u/0/r/month/2023/2/1?tab=mc&pli=1

You can also put parameters in the
body.
• You can put additional parameters or

information in the body, using any coding that
you like.

10

Example interface #1: a todo-list
manager
• Resource: /todos

• GET /todos - get list all of my todo items
• POST /todos - create a new todo item (data

in body; returns ID number of the new item)
• Resource: /todos/:todoItemID

• :todoItemID is a path parameter
• GET /todos/:todoItemID - fetch a single item

by id
• PUT /todos/:todoItemID - update a single

item (new data in body)
• DELETE /todos/:todoItemID - delete a single

item

Example interface #2: the transcript
database
POST /transcripts
-- adds a new student to the database,
-- returns an ID for this student.
-- requires a body parameter 'name', url-encoded (eg name=avery)
-- Multiple students may have the same name.
GET /transcripts/:ID
-- returns transcript for student with given ID. Fails if no such student
DELETE /transcripts/:ID
-- deletes transcript for student with the given ID, fails if no such student
POST /transcripts/:studentID/:courseNumber
-- adds an entry in this student's transcript with given name and course.
-- Requires a body parameter 'grade'.
-- Fails if there is already an entry for this course in the student's transcript
GET /transcripts/:studentID/:courseNumber
-- returns the student's grade in the specified course.
-- Fails if student or course is missing.
GET /studentids?name=string
-- returns list of IDs for student with the given name

Remember the heuristic:
if you were keeping this
data in a bunch of files,
what would the directory
structure look like?

Didn't seem to fit
the model, sorry

It would be better to have a
machine-readable specification
• The specification of the transcript API on
the last slide is RESTful, but is not
machine-readable

• A machine-readable specification is
useful for:
• Automatically generating client and server

boilerplate, documentation, examples
• Tracking how an API evolves over time
• Ensuring that there are no misunderstandings

OpenAPI is a machine-readable
specification language for REST
• Written in YAML
• Not really convenient
for human use

• Better: use a tool!

/towns/{townID}/viewingArea:
post:
operationId: CreateViewingArea

responses:
'204':

description: No content
'400':
description: Invalid values specified
content:
application/json:

schema:
$ref: '#/components/schemas/InvalidParametersError'

description: Creates a viewing area in a given town
tags:
- towns

security: []
parameters:
- description: ID of the town in which to create the new viewing area

in: path
name: townID
required: true
schema:
type: string
- description: |-
session token of the player making the request, must

match the session token returned when the player joined the town
in: header
name: X-Session-Token
required: true
schema:
type: string

requestBody:
description: The new viewing area to create

required: true
content:
application/json:

schema:
$ref: '#/components/schemas/ViewingArea'

description: The new viewing area to create

TSOA uses TS annotations to
generate all the needed pieces

15

Running server
code

OpenAPI
documentation

Typescript with
@Annotations

Readable HTML
documentation

(Swagger)

Sample annotated typescript
@Route('towns')
export class TownsController extends Controller {

/**
* Creates a viewing area in a given town
*
* @param townID ID of the town in which to create the new viewing area
* @param sessionToken session token of the player making the request, must
* match the session token returned when the player joined the town
* @param requestBody The new viewing area to create
*
* @throws InvalidParametersError if the session token is not valid, or if the
* viewing area could not be created
*/

@Post('{townID}/viewingArea')
@Response<InvalidParametersError>(400, 'Invalid values specified')
public async createViewingArea(
@Path() townID: string,
@Header('X-Session-Token') sessionToken: string,
@Body() requestBody: ViewingArea,

){ /** method body goes here */ }

Sample generated HTML (“Swagger”)

Swagger in the wild

18

What to do with JavaScript errors?
• What if your API method ends with an error,

like

• We need to transmit this information back the
requester.

throw new InvalidParametersError('Some message’)

Converting JavaScript Errors to HTTP
Errors
• We wrote this code snippet.

• Under the hood, we use the
popular express web server for
NodeJS

• Express uses an internal pipeline
architecture for processing
requests

• This pipeline stage runs after the
controller, inspects any error that
might be thrown, and returns an
HTTP error of 400, 422 or 500,
depending on which kind of error
you threw.

• This is custom code: not
everything can be generated!

app.use(
(

err: unknown, _req: Express.Request, res: Express.Response,
next: Express.NextFunction,

): Express.Response | void => {
if (err instanceof ValidateError) {

return res.status(422).json({
message: 'Validation Failed',
details: err?.fields,

});
}
if(err instanceof InvalidParametersError){

return res.status(400).json({
message: 'Invalid parameters',
details: err?.message

})
}
if (err instanceof Error) {

console.trace(err);
return res.status(500).json({

message: 'Internal Server Error',
});

}

return next();
},

)

server.ts

https://expressjs.com/

Activity: Build the Transcript REST
API

@Route('transcripts')
export class TranscriptsController extends
Controller {

@Get()
public getAll() {

return db.getAll();
}

Open API
Specification

	CS 4530: Fundamentals of Software Engineering��Module 10.3 Building REST APIs
	REST: Representational State Transfer
	REST Principles
	“Not cacheable” means that it must be executed exactly once per user request.
	Uniform Interface:�Nouns are represented as URIs
	Examples
	Uniform Interface:�Verbs are represented as http methods
	Path parameters specify portions of the path to the resource
	Query parameters allow named parameters
	You can also put parameters in the body.
	Example interface #1: a todo-list manager
	Example interface #2: the transcript database
	It would be better to have a machine-readable specification
	OpenAPI is a machine-readable specification language for REST
	TSOA uses TS annotations to generate all the needed pieces
	Sample annotated typescript
	Sample generated HTML (“Swagger”)
	Swagger in the wild
	What to do with JavaScript errors?
	Converting JavaScript Errors to HTTP Errors
	Activity: Build the Transcript REST API

